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Abstract

District heating and cooling (DHC) network control systems have a big
part to play in enhancing energy system integration, which is vital to allow
the transition towards a more sustainable and affordable energy system. The
STORM controller is an example of an advanced DHC network controller that
allows activating the flexibility from building thermal capacity. The STORM
controller is capable of shifting and managing thermal demands in time, to
improve the operational performance of an entire DHC system. This article
presents the basic properties of the STORM controller, and the results of a
field test campaign in two operational demonstration networks: in Heerlen
(The Netherlands) and Rottne (Sweden). The performance of three control
strategies is evaluated and discussed. The peak shaving strategy led to 3.1%
reduction of peak heat production in Rottne. The market interaction tests
demonstrated the possibility to temporarily increase the heat load by up to
96%, by charging the buildings, while limiting the overall heat consumption
increase to 5.8%. The cell balancing tests in Heerlen achieved a 37–49%
increase of the system capacity and peak reduction in the range 7.5–34%.
DHC system operators can benefit from the STORM controller in the form
of savings on operational costs and CO2 emissions, and increased system
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1. Introduction

District heating and cooling (DHC) networks are recognized as a promi-
nent technology for decarbonizing the energy demand of the built environ-
ment. They enable integration of local renewable or residual sources of ther-
mal energy in the energy system, by providing the connection between heat-
ing and cooling demands with these local sustainable sources. This integra-
tion needs to be further intensified in order to make the upcoming energy
transition possible. Therefore, energy system integration will need to extend
beyond the spatial dimension. The temporal (e.g. shifting production or
consumption in time) and sectorial (e.g. integrating heating, cooling and
electricity) dimensions need to be considered as well [1, 2, 3].

The way forward in this transition to further integration is digitalisation.
Digitalisation is a broad concept referring to the transition of daily operation
processes to a digital environment. The purpose of digitalisation is to make
these processes perform better and work faster, and even enable processes
that would otherwise be impossible. A central role in digitalisation is played
by data: ranging from data gathering (e.g. sensoring, collection) over data
management (e.g. communication, storage) to data processing (e.g. analysis,
control) and post-processing (e.g. reporting, visualization). The more data
that can be used and the easier it can be processed, the more value can
be created from digitalisation. Therefore, digitalisation is gaining more and
more momentum as a result of ongoing evolutions. On the one hand, digital
hardware is becoming cheaper: e.g. sensors, storage, communication. On its
turn, this has boosted progress in data processing, such as analysis tools and
artificial intelligence. As a result, on the other hand, sophisticated algorithms
are now available to handle the growing amounts of data in an automatic –
and thus efficient – way.

In the field of DHC technology, digitalisation has many roles to play.
One of them is supporting the integration of renewable and residual sources
of thermal energy into the energy system. In order to better balance the sup-
ply and demand of energy in space, time and across sectors, more intelligent
DHC control systems are required. Such an intelligent controller for DHC
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systems has been developed in the Horizon 2020 STORM (Self-organizing
Thermal Operational Resource Management) project [4, 5, 6]. The objective
of the STORM controller is to move from separate control systems active in
DHC systems to one integrated control system that manages the entire DHC
system in an optimal way. At present, the STORM controller is capable of
steering distributed flexible thermal loads, such as thermally massive build-
ings. This allows controlling the thermal energy production indirectly – in an
otherwise pure load-following system – towards supply-side objectives. Dur-
ing the course of the STORM project, this approach has been tested in two
demonstration sites: in Heerlen (The Netherlands) and Rottne (Sweden).

The scope of this article is to evaluate the performance of the integrated
STORM controller technology during the testing in the two demonstration
sites. The purpose is to quantify the benefit of the STORM controller for
these two DHC systems. The next section describes the STORM controller
in more detail. The two demonstration sites and the testing approach are
presented in the third section. The fourth section focuses on the main test
results and the evaluation of the STORM controller performance. These re-
sults are discussed in the subsequent section. The major results and findings
are summarized in the last section.

2. The STORM controller

2.1. The STORM project

During the Horizon 2020 STORM project an advanced self-learning con-
troller for district heating and cooling (DHC) networks has been developed
and demonstrated. STORM controls the DHC network by means of demand-
side management, in which the thermal capacity of consumer buildings is
activated in an intelligent way to satisfy system objectives. The general
applicability is guaranteed by the following features:

• Three control strategies are included in the controller. Dependent of
the network, one or more of these strategies can be activated.

• The controller is an add-on to many existing DHC network controllers
and SCADA systems.

• Self-learning control techniques allow a wide-range implementation by
minimizing the required expert knowledge.
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The STORM project has been coordinated by VITO, the Flemish Insti-
tute for Technological Research (Belgium). The project consortium further
consists of partners from various European countries: NODA Intelligent Sys-
tems (Sweden), Mijnwater (The Netherlands), Växjö Energi - VEAB (Swe-
den), Stichting Zuyd Hogeschool (The Netherlands), and Euroheat & Power
(Belgium).

2.2. State of the art before the project

The STORM controller has been built partially on established research
performed in the field of cluster control of thermostatically controlled loads
(TCLs) in electrical grids [7, 8]. Examples of TCLs are water heaters, heat
pumps, refrigerators, freezers, air conditioners or cooling machines. From
a control perspective, these approaches are computationally challenging for
large clusters due to the large number of control and state variables. This can
be mitigated with distributed control methods. One example is distributed
optimization where the control problem is decomposed and subsequently dis-
tributed over a cluster of local agents, jointly finding the optimal solution.
This is however challenging practically due to the high requirements on com-
munication and local computations. Therefore, an alternative approach is
‘aggregate and dispatch’ used in multi-agent systems [7, 9]. An agent is ca-
pable of autonomous and independent actions, possibly based on interactions
with other agents.

In DHC networks, model predictive control solutions [10] have been pre-
sented with excellent performance. However, these require expert-level cus-
tomization of models, preventing scalable roll-out of intelligent control al-
gorithms. Instead, automatic approaches relying on machine learning such
as (batch) reinforcement learning [11, 12] are considered more promising be-
cause of their model-free nature.

2.3. STORM controller functionality

The STORM controller was developed using innovative control algorithms
and implemented in the existing control framework ‘Smart Heat Grid’ of
NODA. The hierarchy of the STORM controller on NODA’s platform is
displayed in Figure 1.

The STORM controller consists of four main components [6]. The Fore-
caster predicts the future heat demand profile and estimates the thermal
flexibility available in the buildings. This information is used by the Planner
to create an optimized heat load control plan, taking into account system
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Figure 1: Overview of the STORM ICT platform on NODA Smart Heat Grid.

constraints and the choice of control strategy. The following three control
strategies for optimizing the heat demand profiles have been developed in
the STORM project:

Peak shaving Reduction of heat load peaks above a prescribed peak heat
production power threshold.

Market interaction Shifting heat loads according to electricity price sig-
nals in DHC systems with connections to the electricity grid (e.g. heat
production with CHPs (combined heat and power) or heat pumps).

Cell balancing Increase of thermal energy exchange in grids providing heat
and cold simultaneously, i.e. matching heat and cold demands.

Once a heat load control plan has been established, it is handed over to
the Tracker. This will dispatch control signals towards individual building
agents (vDERs) in order to try to follow the heat load control plan. Each
vDER (virtual Distributed Energy Resource) interacts with the Tracker to
negotiate how much it can contribute to the heat load control plan, taking
into account local constraints.

The ICT platform itself is based on the NODA Smart Heat Grid system.
In the STORM project certain parts of this system have been further de-
veloped. The operational modules in the Forecaster, Planner and Tracker
have been further developed using algorithms from STORM, while the other
modules create the framework within which these algorithms operate (see
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Figure 1). The platform also includes the capacity to interface with exist-
ing control and supervision systems of different kinds. The Access layer is
a collection of processes and tools to integrate a large range of systems on
the market. The STORM controller algorithms are deployed on the Amazon
AWS cloud platform. After the two systems have been linked, the controller
performs one or more control strategies based on predicted weather data
making use of self-learning techniques to incorporate historical knowledge on
the customer’s operating system.

The performance of the STORM controller forecasting algorithms has
been investigated separately in previous studies [13, 14, 15].

3. Testing in demonstration sites

The STORM controller has been demonstrated in two existing networks:
an innovative combined district heating and cooling network in Heerlen (The
Netherlands), and a typical 3rd generation district heating network in Rottne
(Sweden). The objective of implementing the STORM controller in these
thermal networks has been to improve their efficiency by applying one or a
combination of the aforementioned control strategies.

To connect a DHC system, the STORM controller is digitally linked to
the control systems of the participating buildings as well as the production
and distribution system. This link can be established using a) sensor override
technology, b) gateway solutions, including building automation systems or
c) full integration with an existing data management system. Furthermore,
additional measurement devices, such as indoor sensors, can be added if
required.

Both demonstration sites have been operational before the start of the
STORM project and, apart from weather conditions, subject to constant
changes during the course of the project, such as extra connections, changing
thermal energy demand by customers, etc. It was therefore possible to obtain
reference data for the evaluation of the STORM controller performance.

After a short description of the two demonstration sites, this section dis-
cusses how the STORM controller has been tested.

3.1. Heerlen, The Netherlands

The Mijnwater DHC system in Heerlen (see Figure 2) is an ultra-low
temperature 4th generation DHC grid connected to geothermal storage in
the mine water reservoirs from abandoned coal mines. At the moment the
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total connected surface amounts to 177,291 m2 with a wide variety of owners
and buildings.

Figure 2: The Mijnwater backbone with its connected clusters in Heerlen (The Nether-
lands).

Originally, the Mijnwater system just aimed to gain geothermal energy
from the mine reservoirs. Thereafter the system has evolved into a smart
DHC grid, organized into clusters of buildings. This upgraded Mijnwater grid
exchanges thermal energy, provides additional buffers and is fed by multiple
renewable sources. Each building is connected by a decentralized thermal
energy station, where the temperature demand is ensured by electric heat
pumps. The heating of buildings generates cooling for data centers, stores
and offices and vice versa. If an imbalance between heat and cold demands
occurs in the cluster grid, the Mijnwater backbone transfers this residual
thermal energy to other clusters or -in the end- to the mine water reservoirs.
The thermal energy flows are optimized and controlled by a fully-automatic
demand-driven process-control system.

Currently the Mijnwater-system consists of two hot and two cold bidirec-
tional wells. These wells are connected by means of a pipeline system (the
so-called backbone) through which, depending on the demand, mine water
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flows. The thermal energy exchange with the clusters takes place through
heat exchangers in the cluster installations. At the moment there are three
operational cluster grids (A, B and C) while the development of cluster D
is in progress. The cluster grids are conventional two-pipe systems to which
the buildings are connected.

Each building has its own thermal energy station with heat pumps. As
a result, there is no central thermal energy plant in the grid. In fact the
Mijnwater grid is connecting a cloud of heat pumps in buildings, which pro-
vide the right building conditions while also maintaining the temperature
conditions in the grid (utilizing the backside of the heat pumps).

The Mijnwater system has no thermal production units as such. Basically
the temperature difference of 12–15 ◦C between the warm and cold wells is
used to provide the customers with the desired heat and cold. In fact, the
heat pumps in the customer power stations provide clients with the desired
temperatures and required return temperatures so that thermal energy flows
can be exchanged as much as possible in the system.

The Mijnwater system is entirely powered by electrical energy (for heat
pumps, wells, transportation pumps, etc.). Currently, there are three sites
with photovoltaic installations in order to provide the thermal energy stations
of the connected customers with sustainable electricity.

The ratio between heat and cold delivery in the Mijnwater system is al-
most equal over the years 2014-2018. By linking as many cold receivers as
possible (such as data centers and supermarkets) to heat users, Mijnwater
tries to optimize the balance between cold and heat supply as much as pos-
sible in order to reach a high level of thermal energy exchange between cus-
tomers. While the highest degree of exchange between customers is reached
in cluster A (64%), at the moment the year-round average exchange level is
44% for the entire system.

There are clear demand peaks during the winter months for heating,
as well as for cooling during the summer months. The intermediate peri-
ods (such as spring and autumn) will be the best for reaching the highest
exchange rates. The objective of the STORM controller in the Mijnwater
system is to improve the exchange rate, i.e. using the cell balancing con-
trol strategy to balance heat and cold demands, in order to reduce the net
heat/cold demand from the higher-up hierarchical level: the backbone from
a cluster perspective and the mine water wells from the backbone perspec-
tive. The aim is to reduce electricity costs, increase system capacity and thus
make the operation more profitable.
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All STORM controller hardware had to be installed in Heerlen during
the project and above that all connections had to be programmed between
the PRIVA operating system and the NODA system to allow the STORM
controller to be active. During the course of the project there has been testing
performed in the Heerlen grid to evaluate different ways to influence the
control points. This testing has been done both during heating periods (i.e.
winter) and cooling periods (i.e. summer). Unlike the Rottne demonstration
site in Sweden, the Heerlen grid has control points both in buildings and at
so called cluster stations. These cluster stations are located between each
cluster and the backbone, and basically act as a substation for that specific
cluster. Based on these test periods it has been concluded that it is most
beneficial for the Heerlen grid to focus on the cluster stations rather than the
building as active control points. The reason for this is the special set-up in
the buildings using heat pumps and other components controlled by the BMS
(Building Management System) within the building heating system that are
not possible to control externally (e.g. the STORM controller). Furthermore,
the intermittent behaviour of the building interactions with the cluster makes
it hard to generate robust models of their operational pattern. On the other
hand, the cluster stations display more predictable patterns related to time
of day and weather. This makes them easier to handle within the STORM
framework of algorithms.

The way that the STORM controller interacts with the control points
has also been evaluated during the course of the project. The original plan
was to interact with the control points in Heerlen in a way that is similar
to the generic sensor override concept utilised in the Swedish demonstration
site in Rottne which uses manipulation of the outdoor temperature signal
for the building controller. However, since the buildings in Heerlen display
a behavioural pattern very loosely correlated to changes in outdoor temper-
ature, this makes such a control signal highly inefficient. During the testing
it was also concluded that, even in those cases where such a correlation was
detected, it was still inefficient due to delays in the internal building heating
and cooling system.

In order to address this issue, an alternative way to interact with control
points was devised and consequently integrated into the STORM controller
by Mijnwater and NODA. This control scheme is based on the control signal
setting restrictions on maximum flow levels, which then gives the STORM
controller a way to impose control behaviour at the control point. The ex-
isting system is still free to operate below those levels of restrictions, which
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means that the basic control behaviour of the system was not affected. This
means that the system was more straightforward to implement and conse-
quently more robust in its operational behaviour. The STORM controller
was then able to influence the behaviour in real-time using a control signal
that in turn dynamically sets this maximum flow level. This, in turn, will
lead to a larger temperature difference between the supply and return tem-
perature on the backbone side of the cluster station and will in the end lead
to a lower cluster supply temperature in heating mode and a higher cluster
supply temperature in cooling mode because the heat pumps in the buildings
are forced to operate on more optimal levels.

The intermittent behaviour of the control points made the construction
of the models more difficult, and not achievable using the normal STORM
set of algorithms. In particular, changes in system behaviour has fragmented
the data into shorter time periods ill-suited for time series forecasting, so
the current models focus on recurring behaviours rather than on system
dynamics.

The focus of the testing has been on cluster A and cluster B in the
Heerlen grid. For this purpose, three Trackers are deployed for the clusters
themselves and then also the set of controllable buildings within the two
clusters. However, as per the conclusions in the previous section, the primary
focus of the tests have been on the cluster A and cluster B control points.

3.2. Rottne, Sweden

Rottne is a small city located about 19 kilometers north of Växjö city
and has 2,427 inhabitants. The total land surface area in Rottne is 1,930,000
m2 , of which 201,137 m2 is built area, visualized in Figure 3. Rottne con-
sist mostly of built-up area, but also some green areas. The district heating
system in Rottne, operated by VEAB, is a traditional 3rd generation system
with a high temperature distribution network. The production plant in Rot-
tne was put into commission in September 1998 and extended in 2004. In
2012, the production plant in Rottne became completely fossil free with the
introduction of biofuels.

The baseload heat production in Rottne is based on two biomass boilers
of 1.5 MW and 1 MW maximal capacity. The biomass originates from the
surrounding forests and wood industry, consisting of wood chips, branches
and peaks. An additional bio-oil boiler with a capacity of 3 MW, running on
RME, is used for peak loads and backup. The production plant in Rottne
generates approximately 12.8 GWh a year.
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Figure 3: Overview of the DH distribution system in Rottne (Sweden).

The bio-oil peak load boiler is activated when the heat demand surpasses
the capacity of the two biomass boilers. This happens approximately when
the outdoor temperatures is about -1 ◦C. During mid-winter it is common
that the bio oil burner kicks in due to switching outdoor temperatures. In
order to avoid costly heat production with oil, the heat demand needs to be
controlled to avoid demand peaks.

There are 180 connections to the grid and the same number of substations,
owned by the customers. 70% of all connections are for villas, small-houses.
However, 53 connections are designed for other buildings such as multi-family
houses, industries, public buildings and offices. Here the same connection
can be used for several buildings, since building owners may have their own
network to their buildings but obtain the heat from one substation. This gives
VEAB 71 more buildings using district heat in Rottne. The total consumed
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heat per year is about 10.4 GWh.
The district heating network in Rottne implemented the STORM con-

troller in 2014. The targeted customer segment for the STORM controller
consists of large building owners (B2B), such as non-residential building own-
ers and housing cooperatives. The STORM system is installed in nine of the
largest customer sub-stations in the network of Rottne, representing 34% of
the total heat consumption in Rottne and a heat load of 1.7 MW during an
outdoor temperature of -14 ◦C, when the total heat load of the entire grid
would be 4.4 MW. The control hardware and a basic demand-side manage-
ment system were already present before the start of the project. In a first
step, the STORM Forecaster was implemented. Manual control actions were
based on these forecasts. The second step was to implement the STORM
Planner, using the peak shaving control strategy. This strategy has been ac-
tive since 2018-02-14 in the latest version. Thereafter it was active for testing
during the later stages of the heating season. Some settings were updated
for the 2018/19 heating season and the Planner was fully active throughout
the full heating season of 2018/19.

3.3. Testing approach

The three control strategies developed during the STORM project have
been tested according to the test scheme in Table 1. Due to the differences
between the two demonstration sites, not all strategies have been tested on
each location.

Control strategy Peak shaving Market interaction Cell balancing
Demo-site Heerlen 4 – �
Demo-site Rottne � � –
� Fully automated testing

� Partially manual testing

4 Performance evaluated as side effect

– Strategy not tested

Table 1: Test scheme for the three control strategies in the demonstration sites.

Testing the STORM controller technology in operational district heating
and cooling systems means that Quality of Service (QoS) needs to be ensured.
Therefore, both in Rottne and in Heerlen, only a limited control over the
heat/cold demand could be achieved. For example, very conservative comfort
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constraint margins have been used during testing in order to avoid complaints
from building occupants. This means that the availability flexibility in the
buildings may not have been fully exploited. Furthermore, in the Rottne
demo site, only a small part of the buildings within the Rottne DH system
is connected to the STORM controller, allowing only about 34% of the heat
load to be controlled. In the Heerlen demo site, although all buildings as
well as all system components were linked via the BMS to the STORM
controller, it appeared to be impossible to fundamentally intervene in the
buildings’ climate control. This was due to the lack of permissions by the
building owners.

The data of the STORM controller tests in both demonstration sites
was accessed through the NODA EnergyView dashboard. In the Mijnwater
system, also data from the PRIVA system was available.

4. Test results and performance evaluation

The test results of the STORM controller in the demonstration sites are
presented and discussed in this section. Each control strategy has been tested
separately in the applicable demonstration site(s), see Table 1. Consequently,
the performance of each control strategy is evaluated individually.

4.1. Peak shaving

The peak shaving control strategy aims to reduce the amount of heat pro-
duced by peak units. It assumes a merit order based on marginal costs, e.g.
fuel costs, and tries to shift heat loads above a certain heating power thresh-
old towards times with lower heat load. The peak shaving control feature
has been tested in the Rottne demonstration site, but the cell balancing tests
in Heerlen effectively also brought about peak shaving behaviour (see 4.3).

4.1.1. Methodology

The methodology for evaluating the peak shaving control strategy is based
on the heat load-duration curve of the test period, in comparison with the
behaviour during a historical reference period without active STORM con-
troller. For this, hourly data is used for the following variables:

• total heat load of the network, measured at the heat production plant
(Ptot)
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• combined heat load of the controllable buildings, aggregated from heat
meters of the controllable buildings. Due to data logging and commu-
nication problems over the course of the project, only a subset of four
controllable buildings is used in the analysis (Pset).

• outdoor temperature, calculated as the mean of the outdoor tempera-
tures measured at each of the controllable buildings (Tout)

• controller activity, aggregated from control signals towards all control-
lable buildings

The data used in this evaluation has been recorded in the Rottne demonstra-
tion site from July 1st, 2015 to January 31st, 2019. Times where any of the
variables is missing are excluded from the analysis, as well as the data from
January 23rd, 2018 because of a mechanical incident with one of the wood
chip boilers that day. The resulting pre-processed data set is visualized in
Figure 4.

Figure 4: Pre-processed data from Rottne demonstration site (2015-07-01 to 2019-01-31)
used for evaluation of STORM controller peak shaving performance. Ptot: total heat load;
Pset: summed heat load of 4 controllable buildings; Tout: outdoor temperature.
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Because heat loads are affected by other variables than only the presence
or absence of STORM controller activity, a direct comparison between test
period and reference period is not possible. Instead, the test results are
evaluated indirectly in the present study, by comparing with a reference
model derived from historical data. The reference heat load model is built
as follows:

1. From the historical data set, all hours affected by control actions are
removed. It is assumed that all hours in the range between 1 hour
before and 23 hours after an hour with control activity are potentially
affected. Note that the STORM controller was developed on top of an
existing operational ICT platform, so that no recent period without
control activity was available.

2. The emerging reference data set is analyzed statistically as a function
of two prediction variables: outdoor temperature and hour of the day.
This is done in the form of a two-dimensional look-up table with resolu-
tion 1 ◦C× 1 h (see Figure 5). It is assumed that these two variables are
sufficient to model the variance in the hourly heat load. This choice
involves a trade-off between accuracy, complexity, data richness and
representativeness. More advanced heat load modeling is possible, but
would lack transparency.

3. The reference heat load is modeled by the mean value of the reference
data corresponding to the outdoor temperature and hour of the day.

The total heat load of the network corresponds to the sum of the three
heat production units in the Rottne district heating system: two wood chip
boilers and one bio-oil boiler. Unfortunately, this value can’t be broken
down into individual heat production rates due to the absence of individual
meters. In order to resolve this for the evaluation of peak shaving, it is
assumed that the bio-oil peak boiler is always last in the merit order, and
exactly delivers the heat load exceeding 2.5 MW. This threshold value is
derived from the nominal capacities of the two wood chip baseload boilers,
and has been validated by manual observation. The same threshold value is
used in the controller optimization objective function, so it is an appropriate
choice. Furthermore, it could be argued that the actual heat load shares
of the heat production units are irrelevant for the present evaluation of the
STORM controller, because it focuses only on demand-side management and
not on the supply side.
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(a)

(b)

Figure 5: Reference heat load statistics: (a) mean and (b) standard deviation, as a function
of outdoor temperature and hour of the day. Data from Rottne demonstration site (2015-
07-01 to 2019-01-31), excluding times affected by STORM controller activity. Hour index
corresponds to hour of the day; Tout index corresponds to outdoor temperature with 20
◦C offset. White/empty cells represent conditions that have not been encountered.

Heat load-duration curves are typically calculated from heat load profiles
by sorting values in descending order. However, in this case the reference
heat load profile results from a probabilistic model. The classical calculation
method for the heat load-duration curve is therefore unsuitable, because
it would be biased towards the mean. This is especially important for peak
shaving evaluation because the classical method underestimates the heat load
peaks. This bias is exemplified by the hypothetical case where the heat load
is modeled by a simple normal distribution with constant mean and standard
deviation, i.e. independent of outdoor temperature and hour of the day. The
classical method would yield a constant load-duration curve at the mean
value for all durations. But in reality, the S-like shape typical for load-
duration curves would emerge, as could be shown by for example Monte
Carlo simulations.
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What is needed instead, is a curve depicting heat load with respect to ex-
pected duration. The expected duration that the load is higher than (or equal
to) l∗ is calculated as follows (see Appendix A for derivation and meaning of
symbols):

E[dL](l∗) =

∫
t∈T

(
1− FL(t)(l

∗)
)

dt (1)

Furthermore, it is assumed that the heat load at time t is independent of
other times and is normally distributed. Then, the corresponding cumula-
tive distribution function FL(t) is available in standard statistical software
packages.

This statistical approach for calculating the load-duration curve has been
validated with the historical reference data and compared with the classical
approach. It is concluded that the proposed approach predicts the actual
load-duration curve with higher accuracy than the classical approach. The
mean absolute error (MAE) of the duration of the total heat load is only 7.9h
(relative to a dataset of about 18,000h) when calculated using the statistical
approach, representing a very high accuracy (see Figure 6).

Figure 6: Total heat load-duration curve of the historical reference data and validation of
the reference model (MAE: 7.9h). Note: the actual and modeled load-duration curves are
practically indistinguishable in this graph.
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4.1.2. Results

The evaluation period of the peak shaving control strategy in the Rottne
demonstration site ranges from March 2018 to January 2019. An individual
evaluation of each month as well as an evaluation of the overall period are
performed. The warmer months May to October 2018 are not considered,
because the heat loads are too low to trigger the peak heat boiler.

First, the detailed results of a typical winter month, i.e. December 2018,
are presented and discussed. Figure 7 depicts the total heat load-duration
curve for December 2018 in comparison with the reference model. The change
in heat load duration from the reference (without STORM) to the evaluation
period (with STORM) is separately shown in Figure 8. It can be seen from
both figures that the heat production is partly shifted from loads above
2.5 MW to loads below 2.5 MW. This means that the expensive peak heat
production has decreased, and has been replaced by cheaper baseload heat
production.

Figure 7: Load-duration curve of total network heat load (Ptot) in Rottne demonstration
site during December 2018 (blue), compared to reference model (purple).

The load-duration curve of the subset of controllable heat load in Decem-
ber 2018 is shown in Figure 9. Again, the shift of heat load from high to low
loads can be clearly seen. There are two remarkable qualitative differences
with the results on the total network level. First, the region with reduced
‘peak’ heat load duration is more spread out. The reason for this is that
there is no specific peak threshold value related to the controllable heat load.
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Figure 8: Change in the load-duration curve of total network heat load in Rottne demon-
stration site from the reference to December 2018.

The peak shaving objective is defined on the total network level, and not on
the level of the controllable buildings. Second, the STORM controller has
reduced the average heat load of the controllable buildings. Despite this,
the average total network heat load has increased. This is attributed to the
unobservable behavior of the remaining buildings in the district heating grid.

The quantitative results for all evaluated months are summarized in Fig-
ure 10 and Table 2. The following observations are made:

• The controllable heat load was lower than the reference in all months
except April. Overall, the controllable heat load decreased by 12.7
MWh.

• The total heat load was higher than the reference in all months except
November. Overall, the total heat load increased by 69.1 MWh, as
result of an increase of the uncontrollable heat demand of 81.8 MWh.
Unfortunately, this interferes with the peak shaving testing and dis-
turbs the evaluation.

• Despite the overall heat load increase, the overall peak heat production
was reduced by 7.4 MWh (-3.1%) compared to the reference period
without STORM. The peak heat production was lower in all months
except January, when the peak heat production increased inexplicably
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Figure 9: Load-duration curve of a subset of the controllable heat load (Pset) in Rottne
demonstration site during December 2018 (blue), compared to reference model (purple).

by 12.4 MWh (together with an overall heat demand increase of 48.4
MWh). For the other test months, absolute peak load reductions up
to 7.9 MWh have been obtained on a monthly basis. Together, the
reduction in peak heat production is 19.8 MWh (12.7%) during these
months, which paints a brighter picture than the currently reported
result.

Period Eset Etot Epeak

Reference 974.8 7,220.2 241.5
Test 962.1 7,289.3 234.1
Change -12.7 +69.1 -7.4

(-3.1%)

Table 2: Overall quantitative results of the peak shaving control strategy in Rottne (values
in MWh). Eset: heat consumed by subset of controllable buildings; Etot: total heat
produced; Epeak: peak heat produced.

To summarize, it appears that the STORM controller peak shaving con-
trol strategy performs in the way it should in Rottne. The peak heat pro-
duction is reduced in general, which is the desired result. The overall heat
production seems to have increased, despite the reduction in the heat load
of the controllable buildings.

20



Figure 10: Quantitative results of the peak shaving control strategy in Rottne on monthly
basis.

4.2. Market interaction

The market interaction control strategy aims to maximize income from
electricity production, e.g. when heat is produced by combined heat and
power (CHP), or minimize expenses for electricity consumption, e.g. when
heat is produced by heat pumps. This is enabled by shifting the heat
load towards times with favourable electricity prices (input from an external
source), i.e. high for production, low for consumption. The testing during
the STORM project is focused towards optimizing CHP operation. Analysis
out of other projects, looking at the average volatility during 24-hour peri-
ods on the spot-price market (both intraday and day-ahead), show that the
intraday market provides most financial benefit, simply due to the higher
volatility.

The primary difference between the peak load control strategy and the
market interaction control strategy, is that the latter uses both charging and
discharging. Using only discharging is not a problem in a grid, because the
impact for the customer is to reduce heat consumption. However, if charg-
ing is also used, then the STORM controller has to be smart enough to not
cause increased heat consumption. In certain circumstances this can be ac-
ceptable, e.g. in a situation where the heat source can be shifted from fossil
to renewable and where the customer pays by a fixed sum. However, in most
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practical situations there needs to be a way to ensure that the customers bal-
ance the heat consumption over the period of time, even though the demand
profile is changed. In the STORM controller this is handled by the zero-sum
functionality. This is a setting that can be between 1 and 0, where 1 requires
a full zero-sum compliance of demand while a number lower than 1 relaxes
this requirement.

There are no CHPs in either of the demonstration sites, so there is no pos-
sibility to test the market interaction control strategy in practice. However,
the heat production plants in Rottne have been emulated as being CHPs.
The algorithms used for market interaction are the same as used for the
other applications in the STORM Planner and Tracker, and these have been
extensively tested throughout the project. Furthermore, the ability to charge
and discharge has been specifically tested in the Rottne grid for the benefit
of the evaluation of the market interaction control strategy.

4.2.1. Methodology

The primary focus of the market interaction evaluation is the heat load
shifting, while also considering the system temperatures. The variables used
in the evaluation of market interaction in the Rottne demonstration site are:

• total instantaneous heat load of the network

• outdoor temperature

• control signals (offset outdoor temperature)

• supply temperature on the secondary side

The evaluation focuses on the impact of discharge and charge in relation to
each other, and specifically on the charging since this hasn’t been part of the
more extensive testing of the peak shaving control strategy.

4.2.2. Results

An example of charging a group of buildings in Rottne is shown in Fig-
ure 11. It can be clearly seen that the cluster of buildings react to the control
signals, and consequently increase the heat demand. Table 3 shows the aver-
age results of a number of two-hour control actions for testing charging in the
Rottne grid. All tests were done in the same range of outdoor temperatures.
The results are in line with similar tests for discharging.
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Figure 11: Reaction of the controllable heat load in kW (red, right y-axis) in the Rottne
demonstration site to a coordinated charging control action, i.e. negative offset outdoor
temperature in ◦C (green/pink, left y-axis).

Offset Reference Test Difference
(◦C) (kW) (kW) (kW / %)
-5 805 1,176 371 / 46
-6 700 1,080 380 / 54
-8 582 1,141 559 / 96

Table 3: Average results of two-hour charging tests in Rottne. Heat load right before the
beginning of the test and during the test are compared.

During the testing of charging, it was also tested to discharge in order to
restore the zero-sum as described in the previous section. In that case the re-
sults show zero-sum achieved to a level of 5.8%. These results are in line with
results shown in commercial applications of the STORM controller where the
market interaction control strategy has been active for longer periods of time.

4.3. Cell balancing

The cell balancing control strategy aims to maximize the thermal energy
exchange in a network with combined heat and cold supply. This is done by
shifting both heat and cold demands in time, such that they are balanced by
each other as much as possible. As a result, the network needs to rely less
on external sources of heat and cold. The objective in Heerlen has been to
balance heat and cold demands within each cell, as well as between cells, as
much as possible.

The STORM controller implements cell balancing by means of hydraulic
peak shaving for different clusters. The Trackers strive to minimise the sum
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of squares of the flow, thus implementing hydraulic peak shaving on cell level,
while the vDERs for each control point strive to uphold safety constraints
while allocating flexibility in an optimal way with respect to their individual
models of the system. The resulting cell balancing behaviour is effectively
accompanied by peak shaving performance.

4.3.1. Methodology

The operational behaviour of the fully deployed STORM controller is
evaluated based on the available flow and temperature measurements in the
cluster stations:

• supply temperature on the backbone side

• return temperature on the backbone side

• flow on the backbone side

• flow restriction level setpoint on the backbone side

• control signal intensity

These values are evaluated in relation to the control signals sent by the
STORM controller in order to quantify the impact and benefit for the grid.

4.3.2. Results

The results obtained in cluster A will be focused on in this section, as well
as some highlights from cluster B. Figure 12 shows a period of time when the
STORM controller was fully active in cluster A. The green line shows flow
over the cluster station, while the red line shows the control actions.

It should be noted that although the STORM controller was active through-
out the period shown in Figure 12, the settings of the safety trigger on the
cluster return temperature where different. During the first part of the period
the setting was 12 ◦C and this was later lowered to 8 ◦C, during February
21st. This lowering gave the STORM controller the ability to impact the
operational behaviour in practice, which was not possible during the period
of the higher set-point. The higher setpoint effectively cancelled out all im-
pact of the STORM controller, which makes it possible to use such periods
as references for comparison. During the particular period shown above the
weather conditions were also quite similar throughout the period, with an
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Figure 12: Behaviour of the STORM controller in cluster A in the Heerlen demonstration
site. Before February 21st, the cluster return temperature limit is set on 12 ◦C (reference);
after February 21st, this setting is at 8 ◦C (test). ODT OS: controller signal; PS F:
backbone flow rate.

average outdoor temperature of 8.7 ◦C during the 12 ◦C period and 8.5 ◦C
during the 8 ◦C period.

The primary performance indicators available in the Heerlen case are the
temperature levels and the flow levels, and how they are affected by the
STORM controller. The general idea in the Heerlen case is to lower the
supply temperature in the cluster networks, which results in lower return
temperature in the backbone. In this way, the temperature difference be-
tween the supply and return in the backbone increases, resulting in a lower
flow rate in the backbone. In this way, the backbone can serve more clusters.
However, obviously the operational characteristics of the backbone influence
the capacity within the individual clusters.

Table 4 shows the results of the testing with the active STORM controller
compared to the reference period. The temperature and flow values are mean
values over each period, measured on the backbone side of cluster A.

The results indicate an increase of the ∆T on the backbone side of 3.1
◦C for cluster A — 2.6 ◦C for cluster B. This increase in temperature differ-
ence results in a potential backbone capacity improvement ranging from 37%
(cluster B) to 49% (cluster A). The influence of the two clusters combined
leads to a capacity improvement of 42% on system level.

At the same time the mean value of the flows from the backbone to the
cluster installations decreased with 7.5% for cluster A — and 34% for cluster
B. For the Mijnwater system this peak shaving potential is extremely impor-
tant as system capacity depends to a large extent on the pump capacity of
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Variable Reference Test ∆/%
Supply temperature, ◦C 20.2 21.3 +1.0
Return temperature, ◦C 13.9 11.8 -2.1
∆T , ◦C 6.3 9.5 +3.1
Flow rate, m3/h 15.0 13.9 -7.5% (∗)
Capacity, MJ/m3 26.4 39.4 +49% (∗∗)
(∗) Peak shaving

(∗∗) Cell balancing

Table 4: Cell balancing results of testing the STORM controller in the Heerlen demon-
stration site (cluster A). All variables relate to the backbone side of the cluster station.

the wells. Combining the tested clusters, the peak shaving potential amounts
to 17%.

Once influencing the flows to the thermal energy stations of individual
buildings is up and running, the same benefits on capacity improvement
and flow reduction may be expected, although on a smaller scale. Since the
number of buildings in a cluster is greater than the number of clusters in the
Mijnwater system, cell balancing will play a major role in the smart exchange
of thermal energy flows within the cluster. Naturally, the influence of cell
balancing and peak shaving of individual connections within a cluster will
only have a marginal impact on the total system, although a larger ∆T will
always be beneficial for the entire network.

5. Discussion

The presented results show a promising potential for the performance
of the STORM controller in the demonstration sites that were part of the
project. Nevertheless, some challenges remain regarding the results as well
as the evaluation approach.

Limited heat load controllability. The results obtained in Rottne are due to
the activation of nine buildings, representing around 34% of the heat load
on average. Consequently, the impact of the STORM controller would be
higher if the heat demand of all buildings could be controlled.

In Heerlen, the STORM controller could not control the buildings during
the project because of lack of authorization from building owners. Therefore,
the demand on the thermal grid is managed by controlling the network flow
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through the cluster and building thermal energy stations. Also in this case,
the expected STORM impact would be higher if the building flexibility could
be additionally activated.

Unaccounted heat load variability. Testing and evaluating a technology like
the STORM controller in a realistic environment is challenging. It is not
possible to make a test setup in a lab, because of the size and cost of DHC
systems. Furthermore, the influences from weather and consumer behaviour
would be difficult to simulate realistically. The only possible way is to test
the controller live in an operational environment. With that comes the re-
sponsibility to maintain delivering Quality of Service. This requirement has
two drawbacks.

On the one hand, the margins for testing are tight, meaning that the
controller has to limit itself and behave very conservatively to account for
uncertainties. This means that the actual potential for influencing the build-
ing heat demands could have been higher.

On the other hand, the controller performance can’t be evaluated using
a proper scenario analysis, i.e. testing with and without STORM controller
under identical circumstances. This would require full control over all param-
eters influencing the DHC system performance, which is not feasible because
it involves among others influences due to the weather and consumer be-
haviour. As a result of this challenge, test results can only be compared
against assumed reference behaviour. In the presented results, the STORM
controller was evaluated with respect to the best possible estimate for the
reference performance. But still, unexpected behaviour in the test period
itself can’t be ruled out, or even verified. An example of this is the total heat
demand increase with respect to the reference period in Rottne during peak
shaving tests, especially noticeable in January 2019. Because the heat load of
the controlled buildings was reduced, this is most likely due the large group
of uncontrolled buildings. Furthermore, according to the district heating sys-
tem operation VEAB, a large new building was connected to the DH grid in
this period. Such events are hard to account for in an operational system,
but the impact on the evaluated performance is high. If January 2019 is
excluded from the analysis, then the peak heat production would be reduced
by 19.8 MWh (12.7%), in contrast to the currently reported result of 7.4
MWh (3.1%). And even in the other months, the peak shaving performance
was negatively affected by the behaviour of the uncontrolled buildings.
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Limited testing period. One, if not the only, solution for the previous prob-
lem is to acquire more test data by testing for a longer time. This would
allow better insights in the natural variations and trends in the heat demand
pattern. Outlier behaviour could also be more easily detected and filtered
out. Unfortunately, more data only becomes available at a pace dictated
by the monitored DHC systems, which has important seasonal and yearly
variations. Patience is needed to obtain more results to analyze.

Continued testing of the STORM controller. In order to address the afore-
mentioned issues, further testing of the STORM controller will be done.
Therefore, testing is continuing in the STORM-project demonstration sites.
Furthermore, the STORM controller has in the meantime been installed in
several more DHC networks in demonstration and commercial projects. Re-
sults from this continued testing will allow to get clearer and more general
results, as well as provide input for further improving the STORM controller
technology.

6. Conclusions

During the STORM project, an intelligent controller for DHC systems was
developed. The controller is capable of shifting heat and cold demands in a
DHC network in time. At present, this demand-side management technology
can be utilized for three different control strategies: peak shaving, market
interaction and cell balancing. They have been tested in two demonstration
sites during the project: in Heerlen (The Netherlands) and Rottne (Sweden).

Peak shaving tests were performed in Rottne, with the objective to mini-
mize the consumption of the expensive fuel of the peak heat production unit.
During the testing period, the controllable heat demand was reduced by 12.7
MWh. As a result, the peak heat production was reduced by 7.4 MWh,
representing 3.1% of the reference peak heat production in that period. Due
to inexplicable behaviour of the uncontrollable heat demand – especially in
January 2019 – the results have been masked by external adverse influences.
It is therefore concluded that the peak shaving potential of the STORM con-
troller could be a lot higher than the present results show. More testing over
a longer period is needed to reveal the real potential.

In Rottne, also the market interaction control strategy was tested. Its
objective was to shift the heat demand to align with high electricity spot
prices, such that electricity revenues from CHP heat production could be
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maximized. The tests demonstrated a proof of principle, because the dis-
trict heating grid in Rottne doesn’t have a CHP heat production unit. The
tests focused on two important aspects: charging and consumption balance.
Charging allows to concentrate the heat demand during hours with high elec-
tricity prices. The results show that the heat load could be increased by up
to 559 kW (96%) during charging. The heat consumption balance is impor-
tant to prevent increasing customers net heat demand, which would increase
their heating costs. The tests have demonstrated that the net heat demand
increase during a charge-discharge cycle is at most 5.8%, with typically lower
values encountered in related commercial projects.

Tests in the Heerlen demonstration site, which features hydraulically dis-
connected cluster networks together with a backbone network, primarily fo-
cused on cell balancing. This control strategy aims at balancing heat and
cold demands to promote thermal energy exchange within clusters. This
reduces the dependence on external heat/cold sources (from the backbone
network), representing a system capacity increase. The tests were performed
in two clusters: the capacity increase was 49% in cluster A and 37% in cluster
B. At the same time, the flow rate decreased by 7.5% (cluster A) and 34%
(cluster B), representing the peak shaving potential.

The impact of the STORM controller in DHC networks is case-specific
and depends on the chosen control strategy. Overall, the obtained results
are very satisfactory. They present the following benefits to DHC system
operators:

• Reduction in operational costs: e.g. by replacing consumption of ex-
pensive fuels by cheaper fuels, or maximizing CHP revenues

• Reduction in CO2 emissions: e.g. by replacing CO2-intensive heat
production by more sustainable heat sources

• Increase in system capacity: e.g. by shaving peaks and maximizing
thermal energy exchange

Several challenges with respect to the evaluation approach and results
have been discussed. These are related to the limited controllability of the
heat load in the demonstration sites, the variability of the heat demand, and
the test period duration. These challenges will be tackled in the continued
testing and monitoring of the STORM controller in existing and new projects.

29



Appendix A. Calculation of expected load duration

A short derivation for Equation (1) is presented, which is used in Sec-
tion 4.1 to calculate the expected duration corresponding to a specific heat
load level l∗ in the case that the heat load profile is a random function
L = {L(t)|t ∈ T} over the time period T . For generality and ease of nota-
tion in the derivation, continuous-time notation is used, although practical
calculations require time discretisation.

In the deterministic case, the duration dl of a certain heat load l∗ given
the load profile l, i.e. the amount of time that the heat load profile l is higher
than or equal to l∗, can be calculated as follows:

dl(l
∗) =

∫
t∈T

1l(t)≥l∗dt (A.1)

where 1l(t)≥l∗ is the indicator function, which equals 1 if l(t) ≥ l∗ is true and
0 otherwise.

In the probabilistic case, the expected duration E[dL] of a certain heat
load l∗ given the random load profile L can then be calculated as follows:

E[dL](l∗) = E[dL(l∗)] (A.2)

= E

[∫
t∈T

1L(t)≥l∗dt

]
(A.3)

=

∫
t∈T

E
[
1L(t)≥l∗

]
dt (A.4)

=

∫
t∈T

P [L(t) ≥ l∗]dt (A.5)

=

∫
t∈T

(
1− FL(t)(l

∗)
)

dt (A.6)

where FL(t) is the cumulative distribution function of the random variable
L(t), i.e. FL(t)(l

∗) = P [L(t) < l∗].

Acknowledgments

This work is supported by the European Union’s Horizon 2020 research
and innovation programme under grant agreements No 649743 (STORM)
and No 768936 (TEMPO).

30



References

[1] H. Lund, S. Werner, R. Wiltshire, S. Svendsen, J. E. Thorsen,
F. Hvelplund, B. V. Mathiesen, 4th generation district heating (4gdh),
Energy 68 (2014) 1–11. doi:10.1016/j.energy.2014.02.089.

[2] H. Lund, P. A. Østergaard, D. Connolly, B. V. Mathiesen, Smart
energy and smart energy systems, Energy 137 (2017) 556–565.
doi:10.1016/j.energy.2017.05.123.

[3] H. Lund, P. A. Østergaard, M. Chang, S. Werner, S. Svendsen,
P. Sorknæs, J. E. Thorsen, F. Hvelplund, B. O. G. Mortensen, B. V.
Mathiesen, C. Bojesen, N. Duic, X. Zhang, B. Möller, The status of 4th
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